
PS

The Stochastic Activity Network Laboratory for Cog-
nitive Modeling (SANLab-CM) is a tool for designing
activity networks for routine, interactive behavior where
activities have times assigned stochastically on the basis
of parameters set by the modeler. Activity networks are di-
rected acyclic graphs in which each node represents some
process in time, and connections between nodes represent
execution order; they were first applied to modeling cogni-
tion by Schweickert (1978). Providing stochastic mecha-
nisms extends the activity network approach and results in
various critical paths, paths of activities that explain the en-
tire task execution time, through a single network. Varied
execution times and the resulting set of critical paths have
the potential to advance many research issues, including
implicit versus explicit strategies (e.g., Cary & Carlson,
2001), scheduling processes in working memory (Ehren-
stein, Schweickert, Choi, & Proctor, 1997), the influence
of external factors on the overall time to do a mental task
(Dzhafarov, Schweickert, & Sung, 2004), suboptimal yet
stable performance (Fu & Gray, 2004), and the interleaving
of interactive routines (Gray & Boehm-Davis, 2000; Gray,
Sims, Fu, & Schoelles, 2006). SANLab-CM lowers the
barrier to this type of cognitive modeling by providing a
simple graphical interface to construct complex stochastic
models of interactive behavior.

A Brief History of Activity Network Modeling
in Cognitive Science

Schweickert’s (1978, 1980) generalization of the addi-
tive factor method (Sternberg, 1969a, 1969b) is the earli-
est use we know of activity networks in modern cognitive
science. Fisher and Goldstein (1983) further generalized
Schweickert’s method to independent random variables

drawn from exponential distributions, and later generalized
to interruptible systems involving a wider range of distri-
butions (e.g., exponential, gamma; Goldstein & Fisher,
1991). A decade after Schweickert’s (1978, 1980) gen-
eralization, John (1988, 1990, 1996) adapted the activity
network representation as a control structure for the Model
Human Processor theory of Card, Moran, and Newell
(1983) that facilitated modeling the control and interleav-
ing of cognitive, perceptual, and motor operations. This
notation, CPM-GOMS,1 was successfully used by Gray,
John, and Atwood (1993) to develop cognitive engineering
models that predicted real-time performance of telephone
operators on new workstations. The models were used by
the phone company to save approximately $100 million
in 1989.

The tools for developing such models have been limited
to mathematical notations (Schweickert, 1978), spread-
sheets (Schweickert, Fisher, & Proctor, 2003), or business
productivity software such as MacProject (Gray & Boehm-
Davis, 2000; Gray et al., 1993). Such tools demand a high
level of sophistication on the part of their users, provide
an extremely awkward and error-prone environment in
which to develop any but the simplest of models, and/or
were developed with a specific application in mind (simple
scheduling for production or business) that works against
the needs of the cognitive modeling community.2 Most
computer-based approaches focus on time scales of min-
utes and hours without stochastic manipulations, whereas
cognitive modelers are often interested in phenomena that
occur on the order of tenths of a second, where individual
execution times might vary greatly. The one attempt that we
know of to develop a higher level authoring tool for such
modeling had some important proofs of concept (John,

 877 © 2010 The Psychonomic Society, Inc.

SANLab-CM: A tool for incorporating stochastic
operations into activity network modeling

Evan W. Patton and WaynE d. Gray
Rensselaer Polytechnic Institute, Troy, New York

The Stochastic Activity Network Laboratory for Cognitive Modeling (SANLab-CM) is a new tool that incor-
porates stochastic operations into activity network modeling (Schweickert, Fisher, & Proctor, 2003). In this ar-
ticle, we discuss the core functionality of SANLab-CM and walk through a case study that expands a previously
published single, static path model of telephone operators interacting with customers via a workstation (from
Gray, John, & Atwood, 1993) into a stochastic model that generates 55 unique paths with different frequencies
and a variety of qualitative properties. Without SANLab-CM, it would have been easy to mistake some of the
more frequent critical paths as evidence for alternative strategies for task completion. With SANLab-CM, these
critical paths can be shown to be simple emergent properties of variability in elementary cognitive, perceptual,
and motor processes.

Behavior Research Methods
2010, 42 (3), 877-883
doi:10.3758/BRM.42.3.877

E. W. Patton, pattoe@rpi.edu

PS

878 Patton and Gray

types (e.g., cognitive, perceptual, and motor operators, and
system resource operators) and can be extended to include
new operators as needed.

The user interface. Four main windows are used when
SANLab-CM models are developed and run. The primary
window, the model editor (see Figure 1A), is used for cre-
ating, selecting, and manipulating operators, connecting
operators to create dependencies, and creating interactive
routines. It is often used in conjunction with the toolbar
(see Figure 1B), which lists all of the operator types in
SANLab-CM as well as interactive routines (discussed
below). Selection of an operator type in the Toolbox allows
the user to point and click in the editor window to place
new operators. To change an instantiated operator, one
clicks on the appropriate property and the field becomes
editable. After entering a new value, pressing the Return
key confirms the change and updates all activities in the
current selection. Operator types can also be changed after
instantiation by right-clicking and selecting the “Change
Operator Type” mechanism.

Once operators have been created, pairwise execution
dependencies are established in simple from–to relation-
ships by selecting the Connect tool (the “1” at the top of
the Toolbox window), clicking and holding the mouse but-
ton down inside the “from” operator, dragging the mouse
(with an animation of a line) to the “to” operator, and re-
leasing the mouse button. In the logic of activity networks,
the second operator cannot execute until the first operator
has completed execution.

SANLab-CM provides an at-a-glance view of the model
by rendering it at 1/10th its size in the Model Overview
window (see Figure 1C). This window facilitates the cre-
ation and visual analysis of the model. The gray area in the
overview represents the current view displayed in the editor
and can be dragged around to move to a different point in
the model. Additionally, double-clicking on any point in the
overview will center the display on that location, to make it
easier to move from one end of the model to the other.

Finally, after the software finishes executing a model,
a Results window is displayed (see Figure 2). By default,
it renders the predicted task execution time for each com-
puted trial in the form of a histogram. Below the histo-
gram is a list of all of the critical paths, the longest paths
through the network on any individual trial, and their
respective means and standard deviations. Modelers can
look at a subset of the data by selecting a critical path
from the list of paths. In this mode, only trials that resulted
in the chosen critical path will be rendered. The Results
window also renders an average trial Gantt chart where
the average starting time and duration of each operator
is used to compute the size of the operator. Similar to the
histogram view, choosing a critical path in this view gives
a Gantt chart that visualizes only the trials that resulted in
the specified critical path. The underlying trial data may
also be exported into an Excel file to be used in external
tools for visualization or statistical processing.

Interactive routines. To facilitate the creation of
CPM-GOMS models, SANLab-CM provides a small
set of preconfigured groups of interconnected operators.

Vera, Matessa, Freed, & Remington, 2002; Vera, John,
Remington, Matessa, & Freed, 2005) but was focused at
a specific application (developing CPM-GOMS models)
and seems to have had no lasting influence. In contrast,
SANLab-CM attempts to provide a general-purpose tool
for cognitive modeling of any type, in a graphical user in-
terface developed for modelers, with a core suite of tools
that provide immediate overviews of the model and the
results of modeling that support the need of cognitive mod-
elers. SANLab-CM makes no assumptions about a particu-
lar cognitive paradigm (e.g., serial vs. parallel cognition),
allowing modelers to develop models in the paradigm of
their choosing. In addition, SANLab-CM provides a key
stochastic component that had been underutilized in prior
uses of activity networks in cognitive science.

SANLab-CM: A New Approach to
Activity Network Modeling

SANLab-CM provides tools to investigate how variabil-
ity in the operations used in activity network models affect
task performance. Millisecond-level variations in execu-
tion time can lead to different behavior patterns, given the
same task and cognitive workload (Gray & Boehm-Davis,
2000; Schweickert et al., 2003). In the following sections,
we will discuss each of the components of SANLab-CM
and how they help achieve this goal.

Activity network representation. SANLab-CM rep-
resents the interactions within and between agents and
the external world as a network of elementary cognitive,
perceptual, and motor operations with durations ranging
from approximately 30 to 300 msec. These elementary op-
erations can be composed to form a series of interleaved
atomic actions (referred to in SANLab-CM as interactive
routines; see Gray et al., 2006) with durations of approxi-
mately 300 msec to 3 sec. Example interactive routines in-
clude pressing a key on the keyboard and moving the eyes
from one point in space to another. Interactive routines can
be further composed into unit tasks (Card et al., 1983) with
durations of approximately 3–30 sec. Example unit tasks
might include finding, moving to, and clicking on an icon
on a computer screen, or, if you were a telephone toll and
assistance operator, handling one customer call. Edges in
the network represent dependencies of operators on other
operators.

The representations used in SANLab-CM are adapta-
tions from scheduling theory (see Modor & Phillips, 1970;
Weist & Levy, 1977) and existing literature in experimen-
tal psychology (Ehrenstein et al., 1997; Schweickert, 1978,
1980) and cognitive science (Gray & Boehm-Davis, 2000;
Gray et al., 1993). For the purposes of SANLab-CM, an
elementary operation is defined as an atomic process
utilizing a single resource (cognition, perception, motor,
etc.). Each operator has an associated type that identifies
what resource it utilizes and dictates its default distribu-
tion and parameters. Operators are color coded by their
type to make it easy to identify which operators belong to
what operator type, and can be adjusted along with all of
the default properties associated with that operator type.
 SANLab-CM provides a number of standard operator

SanLab-CM 879

C

B
A

Figure 1. The SANLab-CM Interface: (A) The main editor (large window at the center) where operators are placed and
connected. (B) The Toolbox (vertical window on the left), which lists all of the available operators and interactive routines
for creating models. (C) The Overview window (horizontal window at the top), which displays the model in miniature and
allows the modeler to jump to any point in the model.

Figure 2. The two tabs of the Results window: Histogram (left) and Profile view (right). The Results window provides three
critical functions. First, it displays a histogram, which summarizes the model execution times (left). The modeler can also see a
Gantt chart of the operator execution versus time in the Profile view (right). Below the Histogram and Profile views is the list
of every critical path that appeared in the run of the model. Selecting a critical path segments the data and will rerender the
histogram and Gantt charts using only the data selected.

880 Patton and Gray

tions (see Luce, 1986; Schweickert et al., 2003). There
are also variants of these distributions that take a mean
and a coefficient of variation (CV) instead of the standard
distribution parameters. For convenience, SANLab-CM
provides a “constant” distribution that behaves in the same
manner as the Dirac delta function to support nonstochas-
tic models. The one-dimensional version of Fitts’s law and
a variant with Gaussian noise are also included for calcu-
lating execution times for pointing operations (e.g., mouse
movement and homing to keys). SANLab-CM provides an
editor (see Figure 3) for creating and manipulating distri-
bution functions, which allows modelers to extend the un-
derlying code. Functions must be written in ANSI Com-
mon Lisp and are read and compiled when the application
starts. SANLab-CM stores all of the distributions on disk,
making modified and new distributions easily available
for sharing with the research community.

Model Execution and Data Visualization
Once a modeler has prepared a model, it must be ex-

ecuted by SANLab-CM to produce critical paths. At the
start of a run, the modeler will be prompted for the num-
ber of iterations to calculate. After the number is entered,
SANLab-CM checks that the current version of the model
has been saved and that it conforms to certain rules. The
trials then are performed in the following manner: (1) The
system resets all internal values and calls the distribution
function for each operator instance in the model to assign
a duration; (2) the critical path is computed through the
model and is stored as a record to be returned after all tri-
als are computed; (3) additional statistics are computed,
keyed to each critical path (e.g., conditional mean times,
discussed below).

Exemplar: Adding Variability to Existing Models
In order to demonstrate the tools SANLab-CM provides,

we utilize the CPM-GOMS model developed by Gray
et al. (1993) for call type three in their Project Ernestine

When the operators combine cognitive, perceptual, and
motor operations at a certain temporal resolution, they are
called interactive routines (see Gray et al., 2006). The de-
fault SANLab-CM package includes interactive routines
for mouse clicks, eye movements, and keypresses, and can
be enriched by a modeler to include additional routines
useful to her area of research. When the modeler requires
an interactive routine, she drags the routine from the tool-
bar to the main editor window. On release of the mouse
button, SANLab-CM will prompt for a string to label this
routine (strings need not be unique). The provided string
is appended to the name of each operator in the routine for
easy identification. For example, a modeler interested in
typing could drag a “Key Press” routine to the window and
append the string “J key” if the particular task required the
participant to press the “J” key on the keyboard.

Once the necessary information has been supplied to
the editor, a ghost image of the routine will follow the cur-
sor, allowing the researcher to visualize how the interactive
routine fits into the existing model. Clicking the mouse
button will place the routine, instantiating all of its operator
nodes and the connections between them. This also sets the
default distribution and parameters (as discussed below) to
those specified within the interactive routine (as opposed
to the defaults specified for the activity type). Interactive
routines are color coded in the editor and in the Overview
window. This provides an easy way to identify which rou-
tines are being used within the model and how often they
are used. This visual information can be combined with
the critical path information displayed after model execu-
tion to allow modelers to quickly identify which interactive
routines are most often on the critical path.

Distributions: Supplying Values to Nodes
SANLab-CM supports a plethora of distributions for

calculating execution times for individual operators. Most
of the default set of distributions are commonly used prob-
ability distributions like the normal and gamma distribu-

Figure 3. The Distribution Editor, left, allows for SANLab-CM to be extended with new timing calculations. A sample node,
right, uses this new Fitts’s law distribution to calculate the time required to point at a menu item.

SanLab-CM 881

in that slight differences in times for individual operators
might result in multiple critical paths. SANLab-CM allows
the modeler to assign different distributions for different
operators or different operator types (these assignments
can be based on empirical data or theoretical consider-
ations). In the absence of other ways of determining an
operator’s distribution, Schweickert et al. (2003) followed
Luce (1986) in suggesting that human operations are well
modeled by a gamma distribution. Likewise, parameter
settings for a given distribution (including the gamma dis-
tribution) may be based on empirical or theoretical con-
siderations. For the gamma distribution, Schweickert et al.
recommended using a CV of between 0.1 and 1.0. Since
the original Project Ernestine models included means but
no estimate of variability, we followed Schweickert et al.’s
suggestions and set all of our operators to the “Gamma

study. This particular task required a telephone operator to
obtain a calling card number from a customer and enter it
into her terminal, check that the number was valid for bill-
ing, and then proceed to let the customer place his call, all
of which requires a rich mixture of perception, cognition,
and action. The model was imported into SANLab- CM
from MacProject, and some minor adjustments were made
by assigning operator types to the network nodes. Execut-
ing the standard CPM-GOMS evaluation at this point
determined that the critical path without variability was
12.240 sec for this model (which agreed with the times
obtained in the original study).

Human variability is important in understanding the
likelihood that two models predicting different task com-
pletion times are a reliable prediction of differences in
human response times (RTs). Variability is also important

Figure 4. A histogram (above) of trial execution times produced after running the model 10,000 times, showing a clear positive
skew. Below the histogram is the list of critical paths, ordered by percentage of occurrence, along with their respective means
and standard deviations.

882 Patton and Gray

ters of co-occurring operations (e.g., interactive routines)
provides a fresh look at how slight variations in opera-
tor execution can affect the ultimate critical path an agent
has to take to complete a task and will offer new ways
to test theories about the time distribution of cognitive,
perceptual, and motor operators. The Project Ernestine
model with probability distributions showed that many
different critical paths can be obtained when operations
vary and that these critical paths may differ greatly from
each other. Being able to examine and analyze these large
variations in resource utilization may shed light on human
performance under information overload and other high-
stress situations. The opportunity SANLab-CM provides
to rapidly build activity network models might also help to
extend prior work on interacting with computer software
(e.g., Gray & Boehm-Davis, 2000) or scheduling pro-
cesses in working memory (e.g., Ehrenstein et al., 1997).
As the model execution revealed, one large variation at a
single node in the network can dramatically affect which
resources become critical to task completion. By helping
identify key bottlenecks in a task, we might better design
systems that reduce the variance of different operators,
eliminating diverging paths and resulting in more predict-
able use of mental and external resources.

Future Work
Although SANLab-CM has many features, it is a work

in progress and there are a number of tools that could help
expand its research capabilities. Tools to investigate the
criticality of operators in the network and provide quanti-
tative comparisons between critical paths are in progress
and will appear in future versions of the software. More
advanced distributions will also be made available in the
future, including integration to the ACT–R memory model
to compute recall time for a memory retrieval and guide-
lines for exporting a run of an ACT–R model to SANLab-
CM to facilitate the exploration of variability on ACT–R’s
predictions.

CV” distribution. For the CV, we used Lisp code to set the
CV to between 0.1 and 1.0 of the mean and to randomly
sample a different CV from this range on each trial.

Results
Given these modifications, we ran the model for 10,000

trials. The most frequent critical path, used on 28.34% of
trials, has a mean execution time of 12.339 sec (compared
with 12.240 sec for the nonstochastic model) and a stan-
dard deviation of 0.981 sec. This path matches the original
nonstochastic critical path, with the nonstochastic path
within 0.101 standard deviations of the observed mean.
Overall, 57 unique critical paths were taken through the
model, with 15 of those accounting for 95% of trials (see
Figure 4). Many of these critical paths are very similar to
each other, often differing in the inclusion or exclusion of
a small number of operators. However, across our collec-
tion there were some dramatic differences between critical
paths (see Figure 5). Between the two most frequent criti-
cal paths, the one taken most often is dominated by the
rate at which the customer speaks the digits in his billing
number, whereas the second begins with dependencies on
perceptual operators but eventually switches to being de-
pendent on the typing speed of the operator. The particu-
lar operation that causes the paths to diverge takes only
116 msec on average in the first critical path, whereas it
takes 179 msec on average to execute in the second critical
path, an increase of 63 msec, or 54%. In some cases, the
completion time of the task is driven almost exclusively by
the speed with which the telephone operator can type the
digits into the system. These examples show how the abil-
ity of the user (motor speed) and external factors (the rate
at which the customer speaks) can affect which resources
are most critical to task completion.

Summary and Conclusions
SANLab-CM’s ability to incorporate variability into

activity network models and its built-in support for clus-

Figure 5. Three different critical paths produced through the model. The first is the most often occurring path, through which
perception controls the critical path (the perception operators are red-highlighted toward the top of the model). The second occurs
14% of the time and shows what happens when the telephone operator falls behind on typing characters about two thirds of the way
through handling one phone call (compared with the top critical path, more motor operators are red-highlighted toward the end of
the model). The third occurs rarely (only 0.43% of the time), but shows that slower motor movements can dominate the critical path
(the red-highlighted operators toward the bottom of this model are all motor operators).

SanLab-CM 883

dating GOMS for predicting and explaining real-world task perfor-
mance. Human Computer Interaction, 8, 237-309.

Gray, W. D., Sims, C. R., Fu, W.-T., & Schoelles, M. J. (2006). The soft
constraints hypothesis: A rational analysis approach to resource alloca-
tion for interactive behavior. Psychological Review, 113, 461-482.

John, B. E. (1988). Contributions to engineering models of human–
computer interaction. Pittsburgh: Carnegie Mellon University Press.

John, B. E. (1990). Extension of GOMS analyses to expert performance
requiring perception of dynamic visual and auditory information. Pro-
ceedings of SIGCHI, 1990 (pp. 107-115). New York: ACM.

John, B. E. (1996). TYPIST: A theory of performance in skilled typing.
Human–Computer Interaction, 11, 321-355.

John, B. E., & Gray, W. D. (1992, June). GOMS analysis for parallel
activities tutorial. Paper presented at the ACM CHI ’92 Conference on
Human Factors in Computing Systems, Monterey, CA.

John, B. E., & Gray, W. D. (1994, April). GOMS analysis for parallel
activities tutorial. Paper presented at the ACM CHI ’94 Conference
on Human Factors in Computing Systems, Boston.

John, B. E., & Gray, W. D. (1995, May). GOMS analysis for parallel
activities tutorial. Paper presented at the ACM CHI ’95 Conference
on Human Factors in Computing Systems, Denver.

John, B. E., & Gray, W. D. (1996). GOMS analysis for parallel activi-
ties. Fairfax, VA: George Mason University Press.

John, B. E., Vera, A., Matessa, M., Freed, M., & Remington, R.
(2002, April). Automating CPM-GOMS. Paper presented at the
ACM CHI ’02 Conference on Human Factors in Computing Systems,
Minneapolis, MN.

Luce, R. D. (1986). Response times: Their role in inferring elementary
mental organization. New York: Oxford University Press.

Modor, J. J., & Phillips, C. R. (1970). Project management with CPM
and PERT (2nd ed.). New York: Van Nostrand.

Schweickert, R. (1978). A critical path generalization of the additive
factory method: Analysis of a Stroop task. Journal of Mathematical
Psychology, 18, 105-139.

Schweickert, R. (1980). Critical-path scheduling of mental processes
in a dual task. Science, 209, 704-706.

Schweickert, R., Fisher, D. L., & Proctor, R. W. (2003). Steps to-
ward building mathematical and computer models from cognitive task
analyses. Human Factors, 45, 77-103.

Sternberg, S. (1969a). The discovery of processing stages: Extensions
of Donders’ method. Acta Psychologica, 30, 276-315. (Also published
in W. G. Koster [Ed.], Attention and Performance II. Amsterdam:
North-Holland.)

Sternberg, S. (1969b). Memory-scanning: Mental processes revealed
by reaction-time experiments. American Scientist, 57, 421-457.

Vera, A. H., John, B. E., Remington, R., Matessa, M., & Freed,
M. A. (2005). Automating human performance modeling at the mil-
lisecond level. Human–Computer Interaction, 20, 225-265.

Weist, J. D., & Levy, F. K. (1977). A management guide to PERT/CPM:
With GERT/PDM/DCPM and other networks (2nd ed.). Englewood
Cliffs, NJ: Prentice Hall.

NOTES

1. CPM represents both “critical path method” and “cognitive, percep-
tual, and motor operators.” GOMS is an acronym for Goals, Operators,
Methods, and Selection Rules.

2. Although anecdotal, this assessment is based on the experiences of
John and Gray (1992, 1994, 1995, 1996) in giving 4- to 8-h tutorials at
the annual ACM-SIGCHI conference, and on Gray’s attempts to teach
the spreadsheet alternative in 2001 and 2002.

(Manuscript received November 11, 2009;
revision accepted for publication April 5, 2010.)

Distribution of SANLab-CM
We are currently planning a beta test of SANLab-CM

at a half dozen universities this fall and in early spring.
Researchers who plan to use SANLab-CM in their labo-
ratories or in courses that teach cognitive modeling and
methods have signed up for our trial from Purdue Uni-
versity, Rice University, University of Illinois at Urbana-
 Champaign, University of Groningen, University of Not-
tingham, and (of course) Rensselaer Polytechnic Institute.
For those who might modify or extend SANLab-CM, we
are providing copies of our LGPL-licensed Lisp code.
For others, we provide applications that can run under
either the Macintosh OS X or Microsoft Windows. Please
contact the authors to be included in our listserv and to
gain access to the SANLab-CM Wiki (documentation,
discussion, and sample class materials) and download
site (software).

AuTHOR NOTE

E.W.P. worked on this project while being funded, in part, by the Lock-
heed Martin Advanced Technology Laboratory. The work was supported,
in part, by Grant N000141010019 to W.D.G. from the Office of Naval
Research, Dr. Ray Perez, Project Officer. Correspondence concerning
this article should be addressed to E. W. Patton, Department of Com-
puter Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY
12180 (e-mail: pattoe@rpi.edu).

Note—This article is based on a presentation at the meeting of the
Society for Computers in Psychology, November 2009.

REFERENCES

Card, S., Moran, T. P., & Newell, A. (1983). The psychology of
human– computer interaction. Hillsdale, NJ: Erlbaum.

Cary, M., & Carlson, R. A. (2001). Distributing working memory re-
sources during problem solving. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 27, 836-848.

Dzhafarov, E. N., Schweickert, R., & Sung, K. (2004). Mental ar-
chitectures with selectively influenced but stochastically interdepen-
dent components. Journal of Mathematical Psychology, 48, 51-64.

Ehrenstein, A., Schweickert, R., Choi, S., & Proctor, R. W. (1997).
Scheduling processes in working memory: Instructions control the
order of memory search and mental arithmetic. Quarterly Journal of
Experimental Psychology, 50A, 766-802.

Fisher, D. L., & Goldstein, W. M. (1983). Stochastic PERT networks
as models of cognition: Derivation of the mean, variance, and dis-
tribution of reaction time using order-of-processing (OP) diagrams.
Journal of Mathematical Psychology, 27, 121-151.

Fu, W.-T., & Gray, W. D. (2004). Resolving the paradox of the active
user: Stable suboptimal performance in interactive tasks. Cognitive
Science, 28, 901-935.

Goldstein, W. M., & Fisher, D. L. (1991). Stochastic networks as mod-
els of cognition: Derivation of response-time distributions using the
order-of-processing method. Journal of Mathematical Psychology,
35, 214-241.

Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds matter: An
introduction to microstrategies and to their use in describing and pre-
dicting interactive behavior. Journal of Experimental Psychology:
Applied, 6, 322-335.

Gray, W. D., John, B., & Atwood, M. (1993). Project Ernestine: Vali-

