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The Stochastic Activity Network Laboratory for Cog-
nitive Modeling (SANLab-CM) is a tool for designing 
activity networks for routine, interactive behavior where 
activities have times assigned stochastically on the basis 
of parameters set by the modeler. Activity networks are di-
rected acyclic graphs in which each node represents some 
process in time, and connections between nodes represent 
execution order; they were first applied to modeling cogni-
tion by Schweickert (1978). Providing stochastic mecha-
nisms extends the activity network approach and results in 
various critical paths, paths of activities that explain the en-
tire task execution time, through a single network. Varied 
execution times and the resulting set of critical paths have 
the potential to advance many research issues, including 
implicit versus explicit strategies (e.g., Cary & Carlson, 
2001), scheduling processes in working memory (Ehren-
stein, Schweickert, Choi, & Proctor, 1997), the influence 
of external factors on the overall time to do a mental task 
(Dzhafarov, Schweickert, & Sung, 2004), suboptimal yet 
stable performance (Fu & Gray, 2004), and the interleaving 
of interactive routines (Gray & Boehm-Davis, 2000; Gray, 
Sims, Fu, & Schoelles, 2006). SANLab-CM lowers the 
barrier to this type of cognitive modeling by providing a 
simple graphical interface to construct complex stochastic 
models of interactive behavior.

A Brief History of Activity Network Modeling  
in Cognitive Science

Schweickert’s (1978, 1980) generalization of the addi-
tive factor method (Sternberg, 1969a, 1969b) is the earli-
est use we know of activity networks in modern cognitive 
science. Fisher and Goldstein (1983) further generalized 
Schweickert’s method to independent random variables 

drawn from exponential distributions, and later generalized 
to interruptible systems involving a wider range of distri-
butions (e.g., exponential, gamma; Goldstein & Fisher, 
1991). A decade after Schweickert’s (1978, 1980) gen-
eralization, John (1988, 1990, 1996) adapted the activity 
network representation as a control structure for the Model 
Human Processor theory of Card, Moran, and Newell 
(1983) that facilitated modeling the control and interleav-
ing of cognitive, perceptual, and motor operations. This 
notation, CPM-GOMS,1 was successfully used by Gray, 
John, and Atwood (1993) to develop cognitive engineering 
models that predicted real-time performance of telephone 
operators on new workstations. The models were used by 
the phone company to save approximately $100 million 
in 1989.

The tools for developing such models have been limited 
to mathematical notations (Schweickert, 1978), spread-
sheets (Schweickert, Fisher, & Proctor, 2003), or business 
productivity software such as MacProject (Gray & Boehm-
Davis, 2000; Gray et al., 1993). Such tools demand a high 
level of sophistication on the part of their users, provide 
an extremely awkward and error-prone environment in 
which to develop any but the simplest of models, and/or 
were developed with a specific application in mind (simple 
scheduling for production or business) that works against 
the needs of the cognitive modeling community.2 Most 
computer-based approaches focus on time scales of min-
utes and hours without stochastic manipulations, whereas 
cognitive modelers are often interested in phenomena that 
occur on the order of tenths of a second, where individual 
execution times might vary greatly. The one attempt that we 
know of to develop a higher level authoring tool for such 
modeling had some important proofs of concept (John, 
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types (e.g., cognitive, perceptual, and motor operators, and 
system resource operators) and can be extended to include 
new operators as needed.

The user interface. Four main windows are used when 
SANLab-CM models are developed and run. The primary 
window, the model editor (see Figure 1A), is used for cre-
ating, selecting, and manipulating operators, connecting 
operators to create dependencies, and creating interactive 
routines. It is often used in conjunction with the toolbar 
(see Figure 1B), which lists all of the operator types in 
SANLab-CM as well as interactive routines (discussed 
below). Selection of an operator type in the Toolbox allows 
the user to point and click in the editor window to place 
new operators. To change an instantiated operator, one 
clicks on the appropriate property and the field becomes 
editable. After entering a new value, pressing the Return 
key confirms the change and updates all activities in the 
current selection. Operator types can also be changed after 
instantiation by right-clicking and selecting the “Change 
Operator Type” mechanism.

Once operators have been created, pairwise execution 
dependencies are established in simple from–to relation-
ships by selecting the Connect tool (the “1” at the top of 
the Toolbox window), clicking and holding the mouse but-
ton down inside the “from” operator, dragging the mouse 
(with an animation of a line) to the “to” operator, and re-
leasing the mouse button. In the logic of activity networks, 
the second operator cannot execute until the first operator 
has completed execution.

SANLab-CM provides an at-a-glance view of the model 
by rendering it at 1/10th its size in the Model Overview 
window (see Figure 1C). This window facilitates the cre-
ation and visual analysis of the model. The gray area in the 
overview represents the current view displayed in the editor 
and can be dragged around to move to a different point in 
the model. Additionally, double-clicking on any point in the 
overview will center the display on that location, to make it 
easier to move from one end of the model to the other.

Finally, after the software finishes executing a model, 
a Results window is displayed (see Figure 2). By default, 
it renders the predicted task execution time for each com-
puted trial in the form of a histogram. Below the histo-
gram is a list of all of the critical paths, the longest paths 
through the network on any individual trial, and their 
respective means and standard deviations. Modelers can 
look at a subset of the data by selecting a critical path 
from the list of paths. In this mode, only trials that resulted 
in the chosen critical path will be rendered. The Results 
window also renders an average trial Gantt chart where 
the average starting time and duration of each operator 
is used to compute the size of the operator. Similar to the 
histogram view, choosing a critical path in this view gives 
a Gantt chart that visualizes only the trials that resulted in 
the specified critical path. The underlying trial data may 
also be exported into an Excel file to be used in external 
tools for visualization or statistical processing.

Interactive routines. To facilitate the creation of 
CPM-GOMS models,  SANLab-CM provides a small 
set of preconfigured groups of interconnected operators. 

Vera, Matessa, Freed, & Remington, 2002; Vera, John, 
Remington, Matessa, & Freed, 2005) but was focused at 
a specific application (developing CPM-GOMS models) 
and seems to have had no lasting influence. In contrast, 
SANLab-CM attempts to provide a general-purpose tool 
for cognitive modeling of any type, in a graphical user in-
terface developed for modelers, with a core suite of tools 
that provide immediate overviews of the model and the 
results of modeling that support the need of cognitive mod-
elers. SANLab-CM makes no assumptions about a particu-
lar cognitive paradigm (e.g., serial vs. parallel cognition), 
allowing modelers to develop models in the paradigm of 
their choosing. In addition, SANLab-CM provides a key 
stochastic component that had been underutilized in prior 
uses of activity networks in cognitive science.

SANLab-CM: A New Approach to  
Activity Network Modeling

SANLab-CM provides tools to investigate how variabil-
ity in the operations used in activity network models affect 
task performance. Millisecond-level variations in execu-
tion time can lead to different behavior patterns, given the 
same task and cognitive workload (Gray & Boehm-Davis, 
2000; Schweickert et al., 2003). In the following sections, 
we will discuss each of the components of SANLab-CM 
and how they help achieve this goal.

Activity network representation. SANLab-CM rep-
resents the interactions within and between agents and 
the external world as a network of elementary cognitive, 
perceptual, and motor operations with durations ranging 
from approximately 30 to 300 msec. These elementary op-
erations can be composed to form a series of interleaved 
atomic actions (referred to in  SANLab-CM as interactive 
routines; see Gray et al., 2006) with durations of approxi-
mately 300 msec to 3 sec. Example interactive routines in-
clude pressing a key on the keyboard and moving the eyes 
from one point in space to another. Interactive routines can 
be further composed into unit tasks (Card et al., 1983) with 
durations of approximately 3–30 sec. Example unit tasks 
might include finding, moving to, and clicking on an icon 
on a computer screen, or, if you were a telephone toll and 
assistance operator, handling one customer call. Edges in 
the network represent dependencies of operators on other 
operators.

The representations used in SANLab-CM are adapta-
tions from scheduling theory (see Modor & Phillips, 1970; 
Weist & Levy, 1977) and existing literature in experimen-
tal psychology (Ehrenstein et al., 1997;  Schweickert, 1978, 
1980) and cognitive science (Gray & Boehm-Davis, 2000; 
Gray et al., 1993). For the purposes of SANLab-CM, an 
elementary operation is defined as an atomic process 
utilizing a single resource (cognition, perception, motor, 
etc.). Each operator has an associated type that identifies 
what resource it utilizes and dictates its default distribu-
tion and parameters. Operators are color coded by their 
type to make it easy to identify which operators belong to 
what operator type, and can be adjusted along with all of 
the default properties associated with that operator type. 
 SANLab-CM provides a number of standard operator 
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Figure 1. The SANLab-CM Interface: (A) The main editor (large window at the center) where operators are placed and 
connected. (B) The Toolbox (vertical window on the left), which lists all of the available operators and interactive routines 
for creating models. (C) The Overview window (horizontal window at the top), which displays the model in miniature and 
allows the modeler to jump to any point in the model.

Figure 2. The two tabs of the Results window: Histogram (left) and Profile view (right). The Results window provides three 
critical functions. First, it displays a histogram, which summarizes the model execution times (left). The modeler can also see a 
Gantt chart of the operator execution versus time in the Profile view (right). Below the Histogram and Profile views is the list 
of every critical path that appeared in the run of the model. Selecting a critical path segments the data and will rerender the 
histogram and Gantt charts using only the data selected.
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tions (see Luce, 1986; Schweickert et al., 2003). There 
are also variants of these distributions that take a mean 
and a coefficient of variation (CV) instead of the standard 
distribution parameters. For convenience, SANLab-CM 
provides a “constant” distribution that behaves in the same 
manner as the Dirac delta function to support nonstochas-
tic models. The one-dimensional version of Fitts’s law and 
a variant with Gaussian noise are also included for calcu-
lating execution times for pointing operations (e.g., mouse 
movement and homing to keys). SANLab-CM provides an 
editor (see Figure 3) for creating and manipulating distri-
bution functions, which allows modelers to extend the un-
derlying code. Functions must be written in ANSI Com-
mon Lisp and are read and compiled when the application 
starts. SANLab-CM stores all of the distributions on disk, 
making modified and new distributions easily available 
for sharing with the research community.

Model Execution and Data Visualization
Once a modeler has prepared a model, it must be ex-

ecuted by SANLab-CM to produce critical paths. At the 
start of a run, the modeler will be prompted for the num-
ber of iterations to calculate. After the number is entered, 
SANLab-CM checks that the current version of the model 
has been saved and that it conforms to certain rules. The 
trials then are performed in the following manner: (1) The 
system resets all internal values and calls the distribution 
function for each operator instance in the model to assign 
a duration; (2) the critical path is computed through the 
model and is stored as a record to be returned after all tri-
als are computed; (3) additional statistics are computed, 
keyed to each critical path (e.g., conditional mean times, 
discussed below).

Exemplar: Adding Variability to Existing Models
In order to demonstrate the tools SANLab-CM provides, 

we utilize the CPM-GOMS model developed by Gray 
et al. (1993) for call type three in their Project Ernestine 

When the operators combine cognitive, perceptual, and 
motor operations at a certain temporal resolution, they are 
called interactive routines (see Gray et al., 2006). The de-
fault SANLab-CM package includes interactive routines 
for mouse clicks, eye movements, and keypresses, and can 
be enriched by a modeler to include additional routines 
useful to her area of research. When the modeler requires 
an interactive routine, she drags the routine from the tool-
bar to the main editor window. On release of the mouse 
button, SANLab-CM will prompt for a string to label this 
routine (strings need not be unique). The provided string 
is appended to the name of each operator in the routine for 
easy identification. For example, a modeler interested in 
typing could drag a “Key Press” routine to the window and 
append the string “J key” if the particular task required the 
participant to press the “J” key on the keyboard.

Once the necessary information has been supplied to 
the editor, a ghost image of the routine will follow the cur-
sor, allowing the researcher to visualize how the interactive 
routine fits into the existing model. Clicking the mouse 
button will place the routine, instantiating all of its operator 
nodes and the connections between them. This also sets the 
default distribution and parameters (as discussed below) to 
those specified within the interactive routine (as opposed 
to the defaults specified for the activity type). Interactive 
routines are color coded in the editor and in the Overview 
window. This provides an easy way to identify which rou-
tines are being used within the model and how often they 
are used. This visual information can be combined with 
the critical path information displayed after model execu-
tion to allow modelers to quickly identify which interactive 
routines are most often on the critical path.

Distributions: Supplying Values to Nodes
SANLab-CM supports a plethora of distributions for 

calculating execution times for individual operators. Most 
of the default set of distributions are commonly used prob-
ability distributions like the normal and gamma distribu-

Figure 3. The Distribution Editor, left, allows for  SANLab-CM to be extended with new timing calculations. A sample node, 
right, uses this new Fitts’s law distribution to calculate the time required to point at a menu item.
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in that slight differences in times for individual operators 
might result in multiple critical paths. SANLab-CM allows 
the modeler to assign different distributions for different 
operators or different operator types (these assignments 
can be based on empirical data or theoretical consider-
ations). In the absence of other ways of determining an 
operator’s distribution, Schweickert et al. (2003) followed 
Luce (1986) in suggesting that human operations are well 
modeled by a gamma distribution. Likewise, parameter 
settings for a given distribution (including the gamma dis-
tribution) may be based on empirical or theoretical con-
siderations. For the gamma distribution, Schweickert et al. 
recommended using a CV of between 0.1 and 1.0. Since 
the original Project Ernestine models included means but 
no estimate of variability, we followed Schweickert et al.’s 
suggestions and set all of our operators to the “Gamma 

study. This particular task required a telephone operator to 
obtain a calling card number from a customer and enter it 
into her terminal, check that the number was valid for bill-
ing, and then proceed to let the customer place his call, all 
of which requires a rich mixture of perception, cognition, 
and action. The model was imported into  SANLab- CM 
from MacProject, and some minor adjustments were made 
by assigning operator types to the network nodes. Execut-
ing the standard  CPM-GOMS evaluation at this point 
determined that the critical path without variability was 
12.240 sec for this model (which agreed with the times 
obtained in the original study).

Human variability is important in understanding the 
likelihood that two models predicting different task com-
pletion times are a reliable prediction of differences in 
human response times (RTs). Variability is also important 

Figure 4. A histogram (above) of trial execution times produced after running the model 10,000 times, showing a clear positive 
skew. Below the histogram is the list of critical paths, ordered by percentage of occurrence, along with their respective means 
and standard deviations.
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ters of co-occurring operations (e.g., interactive routines) 
provides a fresh look at how slight variations in opera-
tor execution can affect the ultimate critical path an agent 
has to take to complete a task and will offer new ways 
to test theories about the time distribution of cognitive, 
perceptual, and motor operators. The Project Ernestine 
model with probability distributions showed that many 
different critical paths can be obtained when operations 
vary and that these critical paths may differ greatly from 
each other. Being able to examine and analyze these large 
variations in resource utilization may shed light on human 
performance under information overload and other high-
stress situations. The opportunity SANLab-CM provides 
to rapidly build activity network models might also help to 
extend prior work on interacting with computer software 
(e.g., Gray & Boehm-Davis, 2000) or scheduling pro-
cesses in working memory (e.g.,  Ehrenstein et al., 1997). 
As the model execution revealed, one large variation at a 
single node in the network can dramatically affect which 
resources become critical to task completion. By helping 
identify key bottlenecks in a task, we might better design 
systems that reduce the variance of different operators, 
eliminating diverging paths and resulting in more predict-
able use of mental and external resources.

Future Work
Although SANLab-CM has many features, it is a work 

in progress and there are a number of tools that could help 
expand its research capabilities. Tools to investigate the 
criticality of operators in the network and provide quanti-
tative comparisons between critical paths are in progress 
and will appear in future versions of the software. More 
advanced distributions will also be made available in the 
future, including integration to the ACT–R memory model 
to compute recall time for a memory retrieval and guide-
lines for exporting a run of an ACT–R model to SANLab-
CM to facilitate the exploration of variability on ACT–R’s 
predictions.

CV” distribution. For the CV, we used Lisp code to set the 
CV to between 0.1 and 1.0 of the mean and to randomly 
sample a different CV from this range on each trial.

Results
Given these modifications, we ran the model for 10,000 

trials. The most frequent critical path, used on 28.34% of 
trials, has a mean execution time of 12.339 sec (compared 
with 12.240 sec for the nonstochastic model) and a stan-
dard deviation of 0.981 sec. This path matches the original 
nonstochastic critical path, with the nonstochastic path 
within 0.101 standard deviations of the observed mean. 
Overall, 57 unique critical paths were taken through the 
model, with 15 of those accounting for 95% of trials (see 
Figure 4). Many of these critical paths are very similar to 
each other, often differing in the inclusion or exclusion of 
a small number of operators. However, across our collec-
tion there were some dramatic differences between critical 
paths (see Figure 5). Between the two most frequent criti-
cal paths, the one taken most often is dominated by the 
rate at which the customer speaks the digits in his billing 
number, whereas the second begins with dependencies on 
perceptual operators but eventually switches to being de-
pendent on the typing speed of the operator. The particu-
lar operation that causes the paths to diverge takes only 
116 msec on average in the first critical path, whereas it 
takes 179 msec on average to execute in the second critical 
path, an increase of 63 msec, or 54%. In some cases, the 
completion time of the task is driven almost exclusively by 
the speed with which the telephone operator can type the 
digits into the system. These examples show how the abil-
ity of the user (motor speed) and external factors (the rate 
at which the customer speaks) can affect which resources 
are most critical to task completion.

Summary and Conclusions
SANLab-CM’s ability to incorporate variability into 

activity network models and its built-in support for clus-

Figure 5. Three different critical paths produced through the model. The first is the most often occurring path, through which 
perception controls the critical path (the perception operators are red-highlighted toward the top of the model). The second occurs 
14% of the time and shows what happens when the telephone operator falls behind on typing characters about two thirds of the way 
through handling one phone call (compared with the top critical path, more motor operators are red-highlighted toward the end of 
the model). The third occurs rarely (only 0.43% of the time), but shows that slower motor movements can dominate the critical path 
(the red-highlighted operators toward the bottom of this model are all motor operators).
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NOTES

1. CPM represents both “critical path method” and “cognitive, percep-
tual, and motor operators.” GOMS is an acronym for Goals, Operators, 
Methods, and Selection Rules.

2. Although anecdotal, this assessment is based on the experiences of 
John and Gray (1992, 1994, 1995, 1996) in giving 4- to 8-h tutorials at 
the annual ACM-SIGCHI conference, and on Gray’s attempts to teach 
the spreadsheet alternative in 2001 and 2002.

(Manuscript received November 11, 2009; 
revision accepted for publication April 5, 2010.)

Distribution of SANLab-CM
We are currently planning a beta test of SANLab-CM 

at a half dozen universities this fall and in early spring. 
Researchers who plan to use SANLab-CM in their labo-
ratories or in courses that teach cognitive modeling and 
methods have signed up for our trial from Purdue Uni-
versity, Rice University, University of Illinois at Urbana-
 Champaign, University of Groningen, University of Not-
tingham, and (of course) Rensselaer Polytechnic Institute. 
For those who might modify or extend SANLab-CM, we 
are providing copies of our LGPL-licensed Lisp code. 
For others, we provide applications that can run under 
either the Macintosh OS X or Microsoft Windows. Please 
contact the authors to be included in our listserv and to 
gain access to the SANLab-CM Wiki (documentation, 
discussion, and sample class materials) and download 
site (software).
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